
Weakened Eastern Pacific El Niño Predictability in the Early Twenty-First Century
Author(s) -
Ming Zhao,
Harry H. Hendon,
Oscar Alves,
Guoqiang Liu,
Guomin Wang
Publication year - 2016
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-15-0876.1
Subject(s) - predictability , climatology , sea surface temperature , environmental science , general circulation model , pacific ocean , climate change , climate model , oceanography , geology , physics , quantum mechanics
Predictive skill for El Niño in the equatorial eastern Pacific across a range of forecast models declined sharply in the early twenty-first century relative to what was achieved in the late twentieth century despite ongoing improvements of forecast systems. This decline coincided with a shift in Pacific climate to an enhanced east–west surface temperature gradient across the Pacific and a stronger Walker circulation at the end of the twentieth century. Using seasonal forecast sensitivity experiments with the Australian Bureau of Meteorology coupled model POAMA2.4, the authors show that this shift in background climate acted to weaken key ocean–atmosphere feedbacks that amplify eastern Pacific El Niño, thus resulting in weaker variability that is less predictable. These results indicate that extreme El Niños, such as those that occurred in 1982/83 and 1997/98, were conditioned by the background climate and so were favored to occur in the late twentieth century. However, anticipating future changes in El Niño variability and predictability is an outstanding challenge because causes and prediction of low-frequency variations of Pacific climate have not yet been demonstrated.