z-logo
open-access-imgOpen Access
Assessing the Radiative Effects of Global Ice Clouds Based on CloudSat and CALIPSO Measurements
Author(s) -
Yanping Hong,
Guosheng Liu,
J.-L. F. Li
Publication year - 2016
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-15-0799.1
Subject(s) - longwave , environmental science , cirrus , atmospheric sciences , climatology , radiative transfer , atmosphere (unit) , radiative cooling , ice cloud , shortwave , cloud forcing , radiative forcing , cloud feedback , middle latitudes , optical depth , climate model , climate sensitivity , climate change , geology , meteorology , geography , physics , aerosol , quantum mechanics , oceanography
Although it is well established that cirrus warms Earth, the radiative effect of the entire spectrum of ice clouds is not well understood. In this study, the role of all ice clouds in Earth’s radiation budget is investigated by performing radiative transfer modeling using ice cloud properties retrieved from CloudSat and CALIPSO measurements as inputs. Results show that, for the 2008 period, the warming effect (~21.8 ± 5.4 W m−2) induced by ice clouds trapping longwave radiation exceeds their cooling effect (~−16.7 ± 1.7 W m−2) caused by shortwave reflection, resulting in a net warming effect (~5.1 ± 3.8 W m−2) globally on the earth–atmosphere system. The net warming is over 15 W m−2 in the tropical deep convective regions, whereas cooling occurs in the midlatitudes, which is less than 10 W m−2 in magnitude. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, whereas warming occurs all year-round in the tropics. Ice cloud optical depth τ is shown to be an important factor in determining the sign and magnitude of the net radiative effect. Ice clouds with τ < 4.6 display a warming effect with the largest contributions from those with τ ≈ 1.0. In addition, ice clouds cause vertically differential heating and cooling of the atmosphere, particularly with strong heating in the upper troposphere over the tropics. At Earth’s surface, ice clouds produce a cooling effect no matter how small the τ value is.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here