z-logo
open-access-imgOpen Access
Cloud–Radiation Feedback as a Leading Source of Uncertainty in the Tropical Pacific SST Warming Pattern in CMIP5 Models
Author(s) -
Jun Ying,
Ping Huang
Publication year - 2016
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-15-0796.1
Subject(s) - shortwave radiation , climatology , environmental science , shortwave , coupled model intercomparison project , advection , climate model , cloud feedback , atmospheric sciences , radiation , climate change , geology , climate sensitivity , radiative transfer , oceanography , physics , thermodynamics , quantum mechanics
The role of the intermodel spread of cloud–radiation feedback in the uncertainty in the tropical Pacific SST warming (TPSW) pattern under global warming is investigated based on the historical and RCP8.5 runs from 32 models participating in CMIP5. The large intermodel discrepancies in cloud–radiation feedback contribute 24% of the intermodel uncertainty in the TPSW pattern over the central Pacific. The mechanism by which the cloud–radiation feedback influences the TPSW pattern is revealed based on an analysis of the surface heat budget. A relatively weak negative cloud–radiation feedback over the central Pacific cannot suppress the surface warming as greatly as in the multimodel ensemble and thus induces a warm SST deviation over the central Pacific, producing a low-level convergence that suppresses (enhances) the evaporative cooling and zonal cold advection in the western (eastern) Pacific. With these processes, the original positive SST deviation over the central Pacific will move westward to the western and central Pacific, with a negative SST deviation in the eastern Pacific. Compared with the observed cloud–radiation feedback from six sets of reanalysis and satellite-observed data, the negative cloud–radiation feedback in the models is underestimated in general. It implies that the TPSW pattern should be closer to an El Niño–like pattern based on the concept of observational constraint. However, the observed cloud–radiation feedback from the various datasets also demonstrates large discrepancies in magnitude. Therefore, the authors suggest that more effort should be made to improve the precision of shortwave radiation observations and the description of cloud–radiation feedback in models for a more reliable projection of the TPSW pattern in future.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here