Open Access
An Assessment of Future Southern Hemisphere Blocking Using CMIP5 Projections from Four GCMs
Author(s) -
Simon Parsons,
James Renwick,
Adrian McDonald
Publication year - 2016
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-15-0754.1
Subject(s) - coupled model intercomparison project , climatology , southern hemisphere , northern hemisphere , environmental science , gcm transcription factors , general circulation model , blocking (statistics) , representative concentration pathways , climate model , latitude , atmospheric sciences , climate change , geology , oceanography , statistics , mathematics , geodesy
This study is concerned with blocking events (BEs) in the Southern Hemisphere (SH), their past variability, and future projections. ERA-Interim (ERA-I) is used to compare the historical output from four general circulation models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5); the output of the representative concentration pathway 4.5 and 8.5 (RCP4.5 and RCP8.5) projections are also examined. ERA-I shows that the higher latitudes of the South Pacific Ocean (SPO) are the main blocking region, with blocking occurring predominantly in winter. The CMIP5 historical simulations also agree well with ERA-I for annual and seasonal BE locations and frequencies. A reduction in BEs is observed in the SPO in the 2071–2100 period in the RCP4.5 projections, and this is more pronounced for the RCP8.5 projections and occurs predominantly during the spring and summer seasons. Preliminary investigations imply that the southern annular mode (SAM) is negatively correlated with blocking activity in the SPO in all seasons in the reanalysis. This negative correlation is also observed in the GCM historical output. However, in the RCP projections this correlation is reduced in three of the four models during summer, suggesting that SAM may be less influential in summertime blocking in the future.