z-logo
open-access-imgOpen Access
Evaluating Simulated Fraction of Attributable Risk Using Climate Observations
Author(s) -
Fraser C. Lott,
Peter Stott
Publication year - 2016
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-15-0566.1
Subject(s) - climatology , climate model , brier score , econometrics , observational study , proxy (statistics) , attribution , climate change , reliability (semiconductor) , probabilistic logic , statistics , environmental science , computer science , geology , mathematics , psychology , social psychology , power (physics) , oceanography , physics , quantum mechanics
Although it is critical to assess the accuracy of attribution studies, the fraction of attributable risk (FAR) cannot be directly assessed from observations since it involves the probability of an event in a world that did not happen, the “natural” world where there was no human influence on climate. Instead, reliability diagrams (usually used to compare probabilistic forecasts to the observed frequencies of events) have been used to assess climate simulations employed for attribution and by inference to evaluate the attribution study itself. The Brier score summarizes this assessment of a model by the reliability diagram. By constructing a modeling framework where the true FAR is already known, this paper shows that Brier scores are correlated to the accuracy of a climate model ensemble’s calculation of FAR, although only weakly. This weakness exists because the diagram does not account for accuracy of simulations of the natural world. This is better represented by two reliability diagrams from early and late in the period of study, which would have, respectively, less and greater anthropogenic climate forcing. Two new methods are therefore proposed for assessing the accuracy of FAR, based on using the earlier observational period as a proxy for observations of the natural world. It is found that errors from model-based estimates of these observable quantities are strongly correlated with errors in the FAR estimated in the model framework. These methods thereby provide new observational estimates of the accuracy in FAR.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here