
Inferring Aerosol Cooling from Hydrological Sensitivity
Author(s) -
Timothy DelSole,
Xiaolei Yan,
Michael K. Tippett
Publication year - 2016
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-15-0364.1
Subject(s) - climatology , precipitation , environmental science , climate sensitivity , climate change , climate model , forcing (mathematics) , aerosol , sensitivity (control systems) , downscaling , mean radiant temperature , atmospheric sciences , meteorology , geology , geography , oceanography , electronic engineering , engineering
Hydrological sensitivity is the change in global-mean precipitation per degree of global-mean temperature change. This paper shows that the hydrological sensitivity of the response to anthropogenic aerosol forcing is distinct from that of the combined response to all other forcings and that this difference is sufficient to infer the associated cooling in global-mean temperature. This result is demonstrated using temperature and precipitation data generated by climate models and is robust across different climate models. Remarkably, greenhouse gas warming and aerosol cooling can be estimated in a model without using any spatial or temporal gradient information in the response, provided temperature data are augmented by precipitation data. Over the late twentieth century, the hydrological sensitivities of climate models differ significantly from that of observations. Whether this discrepancy can be attributed to observational error, which is substantial as different estimates of global-mean precipitation are not even significantly correlated with each other, or to model error is unclear. The results highlight the urgency to construct accurate estimates of global precipitation from past observations and for reducing model uncertainty in hydrological sensitivity. This paper also clarifies that previous estimates of hydrological sensitivity are limited in that standard regression methods neglect temperature–precipitation relations that occur through internal variability. An alternative method for estimating hydrological sensitivity that overcomes this limitation is presented.