z-logo
open-access-imgOpen Access
Extreme Convection and Tropical Climate Variability: Scaling of Cold Brightness Temperatures to Sea Surface Temperature
Author(s) -
Sun Wong,
J. Teixeira
Publication year - 2016
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-15-0214.1
Subject(s) - intertropical convergence zone , climatology , sea surface temperature , environmental science , tropical cyclone , convection , brightness temperature , atmospheric sciences , african easterly jet , geology , tropical wave , meteorology , precipitation , brightness , geography , physics , optics
Changes in tropical convective events provide a test bed for understanding changes of extreme convection in a warming climate. Because convective cloud top in deep convection is associated with cold brightness temperatures (BTs) in infrared window channels, variability in global convective events can be studied by spaceborne measurements of BTs. The sensitivity of BTs, directly measured by an Atmospheric Infrared Sounder (AIRS) window channel, to natural changes (the seasonal cycle and El Niño–Southern Oscillation) in tropical sea surface temperature (SST) is examined. It is found that tropical average BTs (over the ocean) at the low percentiles of their probability distributions scale with tropical average SSTs (higher SST leading to colder BTs), with the lower percentiles being significantly more sensitive to changes in SST. The sensitivity is reduced for high percentiles of BT and is insignificant for the median BT, and has similar magnitudes for the two natural changes used in the study. The regions where the lower-percentile BTs are most sensitive to SST are near the edges of the convection active areas (intertropical convergence zone and South Pacific convergence zone), including areas with active tropical cyclone activity. Since cold BTs of lower percentiles represent stronger convective events, this study provides, for the first time, global observational evidence of higher sensitivity of changes in stronger convective activity to a changing SST. This result has important potential implications in answering the key climate question of how severe tropical convection will change in a warming world.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here