
How Has Subtropical Stratocumulus and Associated Meteorology Changed since the 1980s?*
Author(s) -
Seethala Chellappan,
Joel R. Norris,
Timothy A. Myers
Publication year - 2015
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-15-0120.1
Subject(s) - climatology , environmental science , advection , subtropical ridge , marine stratocumulus , subtropics , cloud height , sea surface temperature , atmospheric sciences , cloud cover , precipitation , meteorology , cloud computing , geology , geography , aerosol , physics , fishery , biology , thermodynamics , computer science , operating system
The importance of low-level cloud feedbacks to climate sensitivity motivates an investigation of how low-level cloud amount and related meteorological conditions have changed in recent decades in subtropical stratocumulus regions. Using satellite cloud datasets corrected for inhomogeneities, it is found that during 1984–2009 low-level cloud amount substantially increased over the northeastern Pacific, southeastern Pacific, and southeastern Atlantic; decreased over the northeastern Atlantic; and weakly increased over the southeastern Indian Ocean subtropical stratocumulus regions. Examination of meteorological parameters from four reanalyses indicates that positive trends in low-level cloud amount are associated with cooler sea surface temperature, greater inversion strength, and enhanced cold-air advection. The converse holds for negative trends in low-level cloud amount. A multilinear regression model based on these three meteorological variables reproduces the sign and magnitude of observed cloud amount trends in all stratocumulus regions within the range of observational uncertainty. Changes in inversion strength have the largest independent effect on cloud trends, followed by changes in advection strength. Changes in sea surface temperature have the smallest independent effect on cloud trends. Differing signs of cloud trends and differing contributions from meteorological parameters suggest that observed changes in subtropical stratocumulus since the 1980s may be due to natural variability rather than a systematic response to climate change.