z-logo
open-access-imgOpen Access
Tropical Temperature and Precipitation Responses to Large Volcanic Eruptions: Observations and AMIP5 Simulations
Author(s) -
Angela Meyer,
Doris Folini,
Ulrike Lohmann,
Thomas Peter
Publication year - 2016
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-15-0034.1
Subject(s) - precipitation , climatology , coupled model intercomparison project , volcano , environmental science , el niño southern oscillation , atmospheric sciences , vulcanian eruption , climate model , atmosphere (unit) , geology , climate change , meteorology , geography , oceanography , seismology
Tropical land mean surface air temperature and precipitation responses to the eruptions of El Chichón in 1982 and Pinatubo in 1991, as simulated by the atmosphere-only GCMs (AMIP) in phase 5 of the Coupled Model Intercomparison Project (CMIP5), are examined and compared to three observational datasets. The El Niño–Southern Oscillation (ENSO) signal was statistically separated from the volcanic signal in all time series. Focusing on the ENSO signal, it was found that the 17 investigated AMIP models successfully simulate the observed 4-month delay in the temperature responses to the ENSO phase but simulate somewhat too-fast precipitation responses during the El Niño onset stage. The observed correlation between temperature and ENSO phase (correlation coefficient of 0.75) is generally captured well by the models (simulated correlation of 0.71 and ensemble means of 0.61–0.83). For precipitation, mean correlations with the ENSO phase are −0.59 for observations and −0.53 for the models, with individual ensemble members having correlations as low as −0.26. Observed, ENSO-removed tropical land temperature and precipitation decrease by about 0.35 K and 0.25 mm day−1 after the Pinatubo eruption, while no significant decrease in either variable was observed after El Chichón. The AMIP models generally capture this behavior despite a tendency to overestimate the precipitation response to El Chichón. Scatter is substantial, both across models and across ensemble members of individual models. Natural variability thus may still play a prominent role despite the strong volcanic forcing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here