Open Access
Does External Forcing Interfere with the AMOC’s Influence on North Atlantic Sea Surface Temperature?
Author(s) -
Neil F. Tandon,
Paul J. Kushner
Publication year - 2015
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-14-00664.1
Subject(s) - coupled model intercomparison project , climatology , forcing (mathematics) , sea surface temperature , environmental science , detrended fluctuation analysis , zonal and meridional , climate model , sign (mathematics) , ocean current , geology , climate change , oceanography , mathematics , mathematical analysis , geometry , scaling
Numerous studies have suggested that variations in the strength of the Atlantic meridional overturning circulation (AMOC) may drive predictable variations in North Atlantic sea surface temperature (NASST). However, two recent studies have presented results suggesting that coupled models disagree on both the sign and the phasing of the correlation between AMOC and NASST indices. These studies analyzed linearly detrended output from twentieth-century historical simulations in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). The present study argues that the apparent disagreement among models arises from a comingling of two processes: 1) a bottom-up effect in which unforced AMOC changes lead to NASST changes of the same sign and 2) a top-down effect in which forced NASST changes lead to AMOC changes of the opposite sign. Linear detrending is not appropriate for separating these two effects because the time scales of forced and unforced variations are not well separated. After forced variations are properly removed, the models come into much closer agreement with each other. This argument is supported by analysis of CMIP5 historical simulations, as well as preindustrial control simulations and a 29-member ensemble of the Community Earth System Model, version 1, covering the period 1920–2005. Additional analysis is presented suggesting that, even after the data are linearly detrended, a significant portion of observed NASST persistence may be externally forced.