z-logo
open-access-imgOpen Access
CMIP5 Projections of Arctic Amplification, of the North American/North Atlantic Circulation, and of Their Relationship
Author(s) -
Elizabeth A. Barnes,
Lorenzo M. Polvani
Publication year - 2015
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-14-00589.1
Subject(s) - climatology , coupled model intercomparison project , arctic , middle latitudes , environmental science , general circulation model , arctic dipole anomaly , arctic oscillation , atmospheric circulation , climate model , climate change , global warming , forcing (mathematics) , the arctic , atmospheric sciences , arctic ice pack , oceanography , northern hemisphere , sea ice , geology , drift ice
Recent studies have hypothesized that Arctic amplification, the enhanced warming of the Arctic region compared to the rest of the globe, will cause changes in midlatitude weather over the twenty-first century. This study exploits the recently completed phase 5 of the Coupled Model Intercomparison Project (CMIP5) and examines 27 state-of-the-art climate models to determine if their projected changes in the midlatitude circulation are consistent with the hypothesized impact of Arctic amplification over North America and the North Atlantic. Under the largest future greenhouse forcing (RCP8.5), it is found that every model, in every season, exhibits Arctic amplification by 2100. At the same time, the projected circulation responses are either opposite in sign to those hypothesized or too widely spread among the models to discern any robust change. However, in a few seasons and for some of the circulation metrics examined, correlations are found between the model spread in Arctic amplification and the model spread in the projected circulation changes. Therefore, while the CMIP5 models offer some evidence that future Arctic warming may be able to modulate some aspects of the midlatitude circulation response in some seasons, the analysis herein leads to the conclusion that the net circulation response in the future is unlikely to be determined solely—or even primarily—by Arctic warming according to the sequence of events recently hypothesized.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here