z-logo
open-access-imgOpen Access
Contribution of Synoptic Transients to the Potential Predictability of PNA Circulation Anomalies: El Niño versus La Niña
Author(s) -
Muhammad Adnan Abid,
InSik Kang,
Mansour Almazroui,
Fred Kucharski
Publication year - 2015
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-14-00497.1
Subject(s) - climatology , predictability , sea surface temperature , precipitation , noise (video) , geopotential height , amplitude , anomaly (physics) , environmental science , geology , geography , meteorology , physics , optics , condensed matter physics , artificial intelligence , computer science , image (mathematics) , quantum mechanics
The potential predictability (PP) of seasonal-mean 200-hPa geopotential height (Z200) anomalies in the Pacific–North American (PNA) region is examined for El Niño and La Niña separately by using 50 ensemble members of twentieth-century AGCM simulations. Observed sea surface temperature (SST) is prescribed for the period 1870–2009, and 14 El Niño and La Niña years after 1900 are selected for the present study. The domain-averaged value of PP for Z200 in the PNA region, as measured by the signal-to-noise ratio, for El Niño is about 60% larger than that of La Niña. Such a large PP is mainly due to a larger signal and partly to less noise during El Niño compared to that during La Niña . The transient eddy feedback to the PNA circulation anomalies is stronger during El Niño events (about 50%) than that during La Niña, and this difference in the transients contributes significantly to the different Z200 signals in the PNA region. The noise variance of the transients during El Niño is about 17% smaller than during La Niña, and thus transients play an important role in the reduction of Z200 noise during El Niño. Idealized experiments with the same spatial pattern but different signs of SST anomalies confirm the results mentioned above. Moreover, these experiments with several different amplitudes of positive and negative phases of tropical Pacific SST anomalies show that signals of Z200 and transients are proportional to precipitation anomalies in the tropical Pacific, and noises of Z200 for El Niño cases are somewhat smaller than the corresponding values of La Niña.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here