z-logo
open-access-imgOpen Access
Regional Assessments of Low Clouds against Large-Scale Stability in CAM5 and CAM-CLUBB Using MODIS and ERA-Interim Reanalysis Data
Author(s) -
T. L. Kubar,
Graeme L. Stephens,
Matthew Lebsock,
Vincent E. Larson,
Peter A. Bogenschutz
Publication year - 2015
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-14-00184.1
Subject(s) - overcast , cloud fraction , environmental science , climatology , cloud base , cloud computing , interim , atmospheric sciences , cloud cover , meteorology , geology , physics , geography , computer science , archaeology , sky , operating system
Daily gridded cloud data from MODIS and ERA-Interim reanalysis have been assessed to examine variations of low cloud fraction (CF) and cloud-top height and their dependence on large-scale dynamics and a measure of stability. To assess the stratocumulus (Sc) to cumulus (Cu) transition (STCT), the observations are used to evaluate two versions of the NCAR Community Atmosphere Model version 5 (CAM5), both the base model and a version that has implemented a new subgrid low cloud parameterization, Cloud Layers Unified by Binormals (CLUBB). The ratio of moist static energy (MSE) at 700–1000 hPa (MSEtotal) is a skillful predictor of median CF of screened low cloud grids. Values of MSEtotal less than 1.00 represent either conditionally or absolutely unstable layers, and probability density functions of CF suggest a preponderance of either trade Cu (median CF < 0.4) or transitional Sc clouds (0.4 < CF < 0.9). With increased stability (MSEtotal > 1.00), an abundance of overcast or nearly overcast low clouds exists. While both MODIS and ERA-Interim indicate a fairly smooth transition between the low cloud regimes, CAM5-Base simulates an abrupt shift from trade Cu to Sc, with trade Cu covering both too much area and occurring over excessively strong stabilities. In contrast, CAM-CLUBB simulates a smoother trade Cu to Sc transition (CTST) as a function of MSEtotal, albeit with too extensive coverage of overcast Sc in the primary northeastern Pacific subsidence region. While the overall CF distribution in CAM-CLUBB is more realistic, too few transitional clouds are simulated for intermediate MSEtotal compared to observations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here