z-logo
open-access-imgOpen Access
Influence of the Background State on Rossby Wave Propagation into the Great Lakes Region Based on Observations and Model Simulations*
Author(s) -
K. D. Holman,
David J. Lorenz,
Michael Notaro
Publication year - 2014
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-13-00758.1
Subject(s) - rossby wave , climatology , extratropical cyclone , jet stream , middle latitudes , rossby radius of deformation , northern hemisphere , precipitation , environmental science , geology , coupled model intercomparison project , atmospheric sciences , jet (fluid) , climate model , meteorology , climate change , oceanography , physics , thermodynamics
The authors investigate the relationship between hydrology in the Great Lakes basin—namely, overlake precipitation and transient Rossby waves—using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data and historical output from phase 3 of the Coupled Model Intercomparison Project (CMIP3). The preferred path of observed Rossby wave trains associated with overlake precipitation on Lake Superior depends strongly on season and appears to be related to the time-mean, upper-level flow. During summer and fall, the Northern Hemisphere extratropical jet is relatively narrow and acts as a waveguide, such that Rossby wave trains traversing the Great Lakes region travel along the extratropical Pacific and Atlantic jets. During other months, the Pacific jet is relatively broad, which allows more wave activity originating in the tropics to penetrate into the midlatitudes and influence Lake Superior precipitation. Analysis is extended to CMIP3 models and is intended to 1) further understanding of how variations in the mean state influence transient Rossby waves and 2) assess models’ ability to capture observed features, such as wave origin and track. Results indicate that Rossby wave train propagation in twentieth-century simulations can significantly differ by model. Unlike observations, some models do not produce a well-defined jet across the Pacific Ocean during summer and autumn. In these models, some Rossby waves affecting the Great Lakes region originate in the tropics. Collectively, observations and model results show the importance of the time-mean upper-level flow on Rossby wave propagation and therefore on the relative influence of the tropics versus the extratropics on the hydroclimate of the Great Lakes region.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here