
Moisture Sources of Semiarid Grassland in China Using the Lagrangian Particle Model FLEXPART
Author(s) -
Bо Sun,
Huijun Wang
Publication year - 2014
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-13-00517.1
Subject(s) - precipitation , plateau (mathematics) , grassland , environmental science , climatology , longitude , moisture , latitude , altitude (triangle) , atmospheric sciences , geography , geology , meteorology , mathematical analysis , geometry , mathematics , geodesy , agronomy , biology
In this study, a Lagrangian particle dispersion model, Flexible Particle (FLEXPART), is employed to simulate the trajectories of global air parcels during 2000–09 with the purpose of revealing the moisture sources of the semiarid grasslands of China, especially on precipitation days. Based on land-cover and precipitation data, two areas of semiarid grasslands are identified: one in North China and one in the Tibetan Plateau. Using the FLEXPART simulation results, air parcels reaching these two target regions are traced back for 10 days to examine their temporal variations in position (longitude, latitude, and altitude) and specific humidity. The moisture sources of these semiarid grasslands are discussed for different precipitation categories. Moreover, the contributions of different moisture sources to the precipitation in the target regions are computed and compared. The results indicate that the moisture released in the target regions is substantially from the Eurasian continent, in both summer and winter. During May–September, the southern and eastern adjacent land areas seem to be the main moisture sources of rainfall in the grasslands of North China, while the Eurasian continent on the north and west tends to be the predominant contributor to the rainfall over the grasslands of the eastern Tibetan Plateau. During October–April, moistures released in both target regions principally originate from the Eurasian continent on the north and west. Overall, although the moisture uptake over oceanic sources is also considerable, most released moisture over the target regions is from the Eurasian continent throughout the year, while little of the contribution of oceanic sources is due to great loss of moisture en route.