z-logo
open-access-imgOpen Access
On the Strengthened Relationship between the East Asian Winter Monsoon and Arctic Oscillation: A Comparison of 1950–70 and 1983–2012
Author(s) -
Fēi Li,
Huijun Wang,
Yongqi Gao
Publication year - 2014
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-13-00335.1
Subject(s) - climatology , arctic oscillation , siberian high , geology , anticyclone , advection , rossby wave , east asia , arctic , east asian monsoon , zonal and meridional , jet stream , monsoon , oceanography , northern hemisphere , jet (fluid) , geography , archaeology , china , thermodynamics , physics
In this paper, the authors use NCEP reanalysis and 40-yr ECMWF Re-Analysis (ERA-40) data to document the strengthened relationship between the East Asian winter monsoon (EAWM) and winter Arctic Oscillation (AO) on the interannual time scale with a comparison of 1950–70 and 1983–2012. Their connection was statistically insignificant during 1950–70, whereas it was statistically significant during 1983–2012. The latter significant connection might be attributed to the East Asian jet stream (EAJS) upstream extension: the EAJS signal is relatively confined to the western North Pacific before the 1970s, whereas it extends westward toward East Asia after the 1980s. This upstream extension leads to the rearrangement of eastward-propagating Rossby waves with a much wider horizontal structure, thereby bonding the EAWM and the AO. Furthermore, the authors present observational evidence and model simulations demonstrating that the reduction of autumn Arctic sea ice cover (ASIC) is responsible for the strengthened EAWM–AO relationship after the 1980s by producing the EAJS upstream extension. After the 1980s, a strong anticyclonic anomaly over the polar ocean and anomalous easterly advection over northern Eurasia are generated by the near-surface heating over the Barents–Kara (B–K) Seas caused by the reduction of ASIC. This further induces cold anomalies over northern Eurasia, altering the meridional temperature gradient between the midlatitude and tropical region and consequently leading to westward penetration of the EAJS.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here