z-logo
open-access-imgOpen Access
A Lagrangian Analysis of Deep Convective Systems and Their Local Environmental Effects
Author(s) -
David Duncan,
Christian D. Kummerow,
Gregory S. Elsaesser
Publication year - 2014
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-13-00285.1
Subject(s) - environmental science , climatology , convection , precipitable water , meteorology , precipitation , climate model , cloud cover , atmospheric sciences , geology , cloud computing , climate change , geography , computer science , operating system , oceanography
Life cycles of deep convective raining systems are documented through use of a Lagrangian tracking algorithm applied to high-resolution Climate Prediction Center morphing technique (CMORPH) rainfall data, permitting collocation with related environmental ancillary fields and the International Satellite Cloud Climatology Project (ISCCP) cloud states (Rossow et al. 2005). System life cycles are described in terms of propagation speed, duration, and dominant cloud structures. Tracked systems are usually associated with the ISCCP weather state 1 (WS1) deep convection cloud state and an independent, microwave-based deep convective precipitation regime developed here. The distribution and characteristics of tracked systems are found to be similar between ocean basins in terms of system speed and duration, with westward-propagating systems predominant in every basin. The effects that these systems have on environmental parameters are assessed, stratified according to their average propagation speed and by ocean basin. Regardless of system speed the net effect on the environment is similar, with the largest difference being how quickly changes occur, with net surface radiation decreasing about 150 W m−2 and total precipitable water perturbed by 5–7 kg m−2; sea surface temperature (SST) drops 0.2°–0.3°C over 24 h, with system speed affecting how long SSTs remain depressed. The observed drop in SST is partly caused by the presence of widespread, optically thick clouds that greatly decrease the net surface radiative flux. Quick changes in SSTs caused by tracked systems are captured by buoys but not represented well in gridded SST products, as these regions remain largely under the precipitating cloud cover associated with these systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here