
Comparison of the SST-Forced Responses between Coupled and Uncoupled Climate Simulations
Author(s) -
Hua Chen,
Edwin K. Schneider
Publication year - 2014
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-13-00092.1
Subject(s) - climatology , sea surface temperature , environmental science , gcm transcription factors , atmospheric model , teleconnection , atmosphere (unit) , precipitation , forecast skill , general circulation model , climate model , atmospheric sciences , el niño southern oscillation , climate change , meteorology , geology , geography , oceanography
It is commonly assumed that a reasonable estimate of the SST-forced component of the observed atmospheric circulation is given by an atmospheric GCM (AGCM) forced with the observed SST. However, there are results that find different SST-forced responses from the observed, for example for the ENSO–monsoon relationship, and suggest that these differences are due to lack of coupling to the ocean rather than atmospheric model bias unrelated to coupling. Here, the coupling issue is isolated and examined through perfect model experiments. A coupled atmosphere–ocean GCM (CGCM) simulation and an AGCM simulation forced by the SST from the CGCM are compared to examine whether the SST-forced responses are the same. This question cannot be addressed directly, since the SST-forced response of the CGCM is a priori unknown. Therefore, two indirect tests are applied, based on the assumption that the noise decorrelation time scale is short compared to a month. The first test is to compare the time-lagged linear regressions of the atmospheric fields onto several SST indices (defined as the area-averaged SST anomalies in the tropics or extratropics), with SST leading the atmosphere by a month. The second test is to compare the time lagged linear covariances of several atmospheric indices (including two monsoon indices and a North Atlantic Oscillation index) and SST, with the SST leading the atmosphere by a month. Both tests find that the SST-forced responses are the same in the CGCM and SST-forced AGCM. These tests can be extended to compare the SST-forced responses between different AGCMs, CGCMs, and observations.