
Cloud-State-Dependent Sampling in AIRS Observations Based on CloudSat Cloud Classification
Author(s) -
Qing Yue,
Eric J. Fetzer,
Brian H. Kahn,
Sun Wong,
G. Manipon,
Alexandre Guillaume,
Brian Wilson
Publication year - 2013
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-13-00065.1
Subject(s) - atmospheric infrared sounder , troposphere , environmental science , middle latitudes , cirrus , climatology , depth sounding , cloud top , atmospheric sciences , sampling (signal processing) , cloud feedback , water vapor , satellite , climate model , meteorology , geology , climate change , climate sensitivity , geography , physics , oceanography , astronomy , detector , optics
The precision, accuracy, and potential sampling biases of temperature T and water vapor q vertical profiles obtained by satellite infrared sounding instruments are highly cloud-state dependent and poorly quantified. The authors describe progress toward a comprehensive T and q climatology derived from the Atmospheric Infrared Sounder (AIRS) suite that is a function of cloud state based on collocated CloudSat observations. The AIRS sampling rates, biases, and center root-mean-square differences (CRMSD) are determined through comparisons of pixel-scale collocated ECMWF model analysis data. The results show that AIRS provides a realistic representation of most meteorological regimes in most geographical regions, including those dominated by high thin cirrus and shallow boundary layer clouds. The mean AIRS observational biases relative to the ECMWF analysis between the surface and 200 hPa are within ±1 K in T and from −1 to +0.5 g kg−1 in q. Biases because of cloud-state-dependent sampling dominate the total biases in the AIRS data and are largest in the presence of deep convective (DC) and nimbostratus (Ns) clouds. Systematic cold and dry biases are found throughout the free troposphere for DC and Ns. Somewhat larger biases are found over land and in the midlatitudes than over the oceans and in the tropics, respectively. Tropical and oceanic regions generally have a smaller CRMSD than the midlatitudes and over land, suggesting agreement of T and q variability between AIRS and ECMWF in these regions. The magnitude of CRMSD is also strongly dependent on cloud type.