z-logo
open-access-imgOpen Access
ENSO Transition, Duration, and Amplitude Asymmetries: Role of the Nonlinear Wind Stress Coupling in a Conceptual Model
Author(s) -
Kit Yan Choi,
Gabriel A. Vecchi,
Andrew T. Wittenberg
Publication year - 2013
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-13-00045.1
Subject(s) - climatology , wind stress , climate model , amplitude , coupling (piping) , atmospheric sciences , nonlinear system , environmental science , coupled model intercomparison project , geophysical fluid dynamics , physics , climate change , geology , oceanography , materials science , quantum mechanics , metallurgy
The El Niño–Southern Oscillation (ENSO) exhibits well-known asymmetries: 1) warm events are stronger than cold events, 2) strong warm events are more likely to be followed by cold events than vice versa, and 3) cold events are more persistent than warm events. Coupled GCM simulations, however, continue to underestimate many of these observed features. To shed light on these asymmetries, the authors begin with a widely used delayed-oscillator conceptual model for ENSO and modify it so that wind stress anomalies depend more strongly on SST anomalies (SSTAs) during warm conditions, as is observed. Then the impact of this nonlinearity on ENSO is explored for three dynamical regimes: self-sustained oscillations, stochastically driven oscillations, and self-sustained oscillations disrupted by stochastic forcings. In all three regimes, the nonlinear air–sea coupling preferentially strengthens the feedbacks (both positive and delayed negative) during the ENSO warm phase—producing El Niños that grow to a larger amplitude and overshoot more rapidly and consistently into the opposite phase, than do the La Niñas. Finally, the modified oscillator is applied to observational records and to control simulations from two global coupled ocean–atmosphere–land–ice models [Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1) and version 2.5 (GFDL CM2.5)] to elucidate the causes of their differing asymmetries.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here