z-logo
open-access-imgOpen Access
Characteristics of Subsurface Ocean Response to ENSO Assessed from Simulations with the NCEP Climate Forecast System
Author(s) -
Hui Wang,
Arun Kumar,
Wanqiu Wang
Publication year - 2013
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-12-00795.1
Subject(s) - climatology , sea surface temperature , el niño southern oscillation , thermocline , tropical atlantic , environmental science , subsurface flow , wind stress , oceanography , climate model , multivariate enso index , geology , climate change , la niña , geotechnical engineering , groundwater
The subsurface ocean temperature response to El Niño–Southern Oscillation (ENSO) is examined based on 31-yr (1981–2011) simulations with the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) coupled model. The model sea surface temperature (SST) in the tropical Pacific is relaxed to observations to ensure realistic ENSO variability in the simulations. In the tropical Pacific, the subsurface temperature response to the ENSO SST is closely related to the variability of thermocline. The subsurface response is stronger and deeper in the tropical Indian Ocean than in the tropical Atlantic. The analysis at three selected locations reveals that the peak response of the subsurface temperature to ENSO lags the Niño-3.4 SST by 3, 6, and 6 months, respectively, in the southern tropical Indian Ocean, the northern tropical Atlantic, and the North Pacific, where SSTs are also known to be strongly influenced by ENSO. The ENSO-forced temperature anomalies gradually penetrate to the deeper ocean with time in the North Pacific and the tropical Atlantic, but not in the tropical Indian Ocean where the subsurface response at different depths peaks almost at the same time (i.e., at about 3–4 months following ENSO). It is demonstrated that the ENSO-induced surface wind stress plays an important role in determining the time scale and strength of the subsurface temperature response to ENSO in the North Pacific and the northern tropical Atlantic. Additionally, the ENSO-related local surface latent heat flux also contributes to the subsurface response to ENSO in these two regions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here