z-logo
open-access-imgOpen Access
Intermodel Variability and Mechanism Attribution of Central and Southeastern U.S. Anomalous Cooling in the Twentieth Century as Simulated by CMIP5 Models
Author(s) -
Zaitao Pan,
Xiaodong Liu,
Sanjiv Kumar,
Zhiqiu Gao,
James L. Kinter
Publication year - 2013
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-12-00559.1
Subject(s) - coupled model intercomparison project , climatology , forcing (mathematics) , environmental science , atlantic multidecadal oscillation , greenhouse gas , climate model , atmospheric sciences , evapotranspiration , pacific decadal oscillation , north atlantic oscillation , climate change , sea surface temperature , geology , oceanography , ecology , biology
Some parts of the United States, especially the southeastern and central portion, cooled by up to 2°C during the twentieth century, while the global mean temperature rose by 0.6°C (0.76°C from 1901 to 2006). Studies have suggested that the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) may be responsible for this cooling, termed the “warming hole” (WH), while other works reported that regional-scale processes such as the low-level jet and evapotranspiration contribute to the abnormity. In phase 3 of the Coupled Model Intercomparison Project (CMIP3), only a few of the 53 simulations could reproduce the cooling. This study analyzes newly available simulations in experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) from 28 models, totaling 175 ensemble members. It was found that 1) only 19 out of 100 all-forcing historical ensemble members simulated negative temperature trend (cooling) over the southeast United States, with 99 members underpredicting the cooling rate in the region; 2) the missing of cooling in the models is likely due to the poor performance in simulating the spatial pattern of the cooling rather than the temporal variation, as indicated by a larger temporal correlation coefficient than spatial one between the observation and simulations; 3) the simulations with greenhouse gas (GHG) forcing only produced strong warming in the central United States that may have compensated the cooling; and 4) the all-forcing historical experiment compared with the natural-forcing-only experiment showed a well-defined WH in the central United States, suggesting that land surface processes, among others, could have contributed to the cooling in the twentieth century.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here