
Is the Interannual Variability of the Summer Asian–Pacific Oscillation Predictable?
Author(s) -
Yanyan Huang,
Huijun Wang,
Ping Zhao
Publication year - 2013
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-12-00450.1
Subject(s) - climatology , hindcast , predictability , environmental science , anticyclone , troposphere , atmospheric circulation , pacific decadal oscillation , east asia , monsoon , subtropics , teleconnection , east asian monsoon , sea surface temperature , atmospheric sciences , geography , el niño southern oscillation , geology , china , physics , archaeology , quantum mechanics , fishery , biology
The summer (June–August) Asian–Pacific Oscillation (APO) measures the interannual variability of large-scale atmospheric circulation over the Asian–North Pacific Ocean sector. In this study, the authors assess the predictability of the summer APO index interannual variability and the associated atmospheric circulation anomalies using the 1959–2001 hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF), Centre National de Recherches Météorologiques (CNRM), and the Met Office (UKMO) general circulation models from the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) project. The results show that these models predict the summer APO index interannual variability well and have higher skill for the North Pacific than for the Asian upper-tropospheric temperature. Meanwhile, the observed APO-related atmospheric circulation anomalies in the South Asian high, the tropical easterly wind jet over the Asian monsoon region in the upper troposphere, the subtropical anticyclone over the North Pacific, and the summer southwest monsoon over Asia in the lower troposphere are reasonably well predicted in their spatial patterns and intensities. Compared with the observations, however, these models display low skill in predicting the long-term varying trends of the upper-tropospheric temperature over the Asian–North Pacific sector or the APO index during 1959–2001.