z-logo
open-access-imgOpen Access
The Role of Mesoscale Convective Complexes in Southern Africa Summer Rainfall
Author(s) -
Ross C. Blamey,
C. J. C. Reason
Publication year - 2013
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-12-00239.1
Subject(s) - orography , climatology , precipitation , mesoscale meteorology , subtropics , flooding (psychology) , mesoscale convective system , environmental science , geography , geology , meteorology , psychology , fishery , psychotherapist , biology
A combination of numerous factors, including geographic position, regional orography, and local sea surface temperatures, means that subtropical southern Africa experiences considerable spatial and temporal variability in rainfall and is prone to both frequent flooding and drought events. One system that may contribute to rainfall variability in the region is the mesoscale convective complex (MCC). In this study, Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) data is used to document the precipitation produced by MCCs over southern Africa for the 1998–2006 period. Most of the rainfall associated with MCCs is found to occur over central Mozambique, extending southward to eastern South Africa. High precipitation totals associated with these systems also occur over the neighboring southwest Indian Ocean, particularly off the northeast coast of South Africa. MCCs are found to contribute up to 20% of the total summer rainfall (November–March) in parts of the eastern region of southern Africa. If the month of March is excluded from the analysis, then the contribution increases up to 24%. In general, the MCC summer rainfall contribution for most of the eastern region is approximately between 8% and 16%. Over the western interior and Botswana and Namibia, the MCC contribution is much less (<6%). It is also evident that there is considerable interannual variability associated with the contribution that these systems make to the total warm season rainfall.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here