
Changes in the Risk of Extratropical Cyclones in Eastern Australia
Author(s) -
Andrew Dowdy,
Graham A. Mills,
Bertrand Timbal,
Yan Wang
Publication year - 2013
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-12-00192.1
Subject(s) - extratropical cyclone , climatology , environmental science , cyclone (programming language) , storm , troposphere , climate model , atmospheric sciences , climate change , geography , geology , meteorology , oceanography , field programmable gate array , computer science , computer hardware
The east coast of Australia is a region of the world where a particular type of extratropical cyclone, known locally as an east coast low, frequently occurs with severe consequences such as extreme rainfall, winds, and waves. The likelihood of formation of these storms is examined using an upper-tropospheric diagnostic applied to three reanalyses and three global climate models (GCMs). Strong similarities exist among the results derived from the individual reanalyses in terms of their seasonal variability (e.g., winter maxima and summer minima) and interannual variability. Results from reanalyses indicate that the threshold value used in the diagnostic method is dependent on the spatial resolution. Results obtained when applying the diagnostic to two of the three GCMs are similar to expectations given their spatial resolutions, and produce seasonal cycles similar to those from the reanalyses. Applying the methodology to simulations from these two GCMs for both current and future climate in response to increases in greenhouse gases indicates a reduction in extratropical cyclone occurrence of about 30% from the late twentieth century to the late twenty-first century for eastern Australia. In addition to the absolute risk of formation of these extratropical cyclones, spatial climatologies of occurrence are examined for the broader region surrounding eastern Australia. The influence of large-scale modes of atmospheric and oceanic variability on the occurrence of these storms in this region is also discussed.