z-logo
open-access-imgOpen Access
Influence of ENSO on Pacific Decadal Variability: An Analysis Based on the NCEP Climate Forecast System
Author(s) -
Hui Wang,
Arun Kumar,
Wanqiu Wang,
Yan Xue
Publication year - 2012
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-11-00573.1
Subject(s) - pacific decadal oscillation , climatology , environmental science , el niño southern oscillation , sea surface temperature , ocean gyre , subtropics , geology , fishery , biology
The influence of El Niño–Southern Oscillation (ENSO) on Pacific decadal variability (PDV) is investigated by comparing two 500-yr simulations with the National Centers for Environmental Prediction (NCEP) Climate Forecast System coupled model. One simulation is a no-ENSO run, in which model daily sea surface temperature (SST) in the tropical Pacific Ocean is relaxed to the observed climatology. The other simulation is a fully coupled run and retains ENSO variability. The PDV considered in this study is the first two empirical orthogonal functions of monthly SST anomalies in the North Pacific: the Pacific decadal oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO). The PDO in the no-ENSO run can be clearly identified. Without ENSO, the PDO displays relatively higher variance at the decadal time scale and no spectral peak at the interannual time scale. In the ENSO run, the PDO variability increases slightly. ENSO not only enhances the variability of the PDO at the interannual time scale, but also shifts the PDO to longer time scales—both consistent with observations. ENSO modulates the Aleutian low and associated surface wind over the North Pacific. The latter, in turn, helps establish a more persistent PDO in the ENSO run. The results also indicate a PDO modulation of global ENSO impacts and the linearity in the superposition of the ENSO-forced and PDO-related atmospheric anomalies. Compared to observations, the NPGO in both simulations lacks power at the time scale longer than 30 yr. On the decadal time scale, the variability of the NPGO is weaker in the ENSO run than in the no-ENSO run.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here