z-logo
open-access-imgOpen Access
The Leading Pattern of Intraseasonal and Interannual Indian Ocean Precipitation Variability and Its Relationship with Asian Circulation during the Boreal Cold Season
Author(s) -
Andrew Hoell,
Mathew Barlow,
Roop Saini
Publication year - 2012
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-11-00572.1
Subject(s) - climatology , empirical orthogonal functions , outgoing longwave radiation , advection , precipitation , environmental science , madden–julian oscillation , forcing (mathematics) , atmospheric circulation , baroclinity , atmospheric sciences , convection , geology , geography , meteorology , physics , thermodynamics
The leading pattern of precipitation for the Indian Ocean, one of the most intense areas of rainfall on the globe, is calculated for November–April 1979–2008. The associated regional circulation and thermodynamic forcing of precipitation over Asia are examined at both intraseasonal and interannual time scales. The leading pattern is determined using both empirical orthogonal function analysis of monthly precipitation data and a closely related index of daily outgoing longwave radiation filtered into intraseasonal (33–105 days) and interannual (greater than 105 days) components. The leading pattern has a maximum in the tropical eastern Indian Ocean, and is closely associated with the Madden–Julian oscillation at intraseasonal time scales and related to the El Niño–Southern Oscillation at interannual time scales. Both time scales are associated with baroclinic Gill–Matsuno-like circulation responses extending over southern Asia, but the interannual component also has a strong equivalent barotropic circulation. Thermodynamically, both time scales are associated with cold temperature advection and subsidence over southwest Asia, with advection of the mean temperature by the anomalous wind more important at lower and midlevels and advection of the anomalous temperature by the mean wind more important at upper levels. For individual months, the intraseasonal variability can overwhelm the interannual variability. Enhanced Indian Ocean convection persisted for almost the entire 2007/08 season in association with severe drought over southwest Asia, but a strong intraseasonal signal in January 2008 reversed the pattern, resulting in damaging floods in the midst of drought.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here