z-logo
open-access-imgOpen Access
An Analysis of Low- and High-Frequency Summer Climate Variability around the Caribbean Antilles
Author(s) -
Isabelle Gouirand,
Mark R. Jury,
Bernd Sing
Publication year - 2012
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-11-00269.1
Subject(s) - climatology , tropical atlantic , north atlantic oscillation , el niño southern oscillation , environmental science , oceanography , period (music) , indian ocean dipole , pacific decadal oscillation , geology , sea surface temperature , physics , acoustics
This study contrasts the pattern of low-frequency (LF) and high-frequency (HF) climate variability in the eastern Caribbean. A low-pass Butterworth filter is used to study oscillations in rainfall and regional SST on time scales of greater and less than 8 yr in the period 1901–2002. The results show that the southern and northern Antilles are dominated by HF variability, whereas rainfall fluctuations in the eastern Antilles oscillate at quasi-decadal periods over the 102-yr record. In the southern Antilles, the HF rainfall signal derives from a late-summer response to the ENSO phase: warm and dry versus cool and wet. In the northern Antilles, the HF signal relates to a combination of an ENSO and North Atlantic Oscillation (NAO) phase: a warm ENSO and a negative NAO bring wetter conditions, while a cool ENSO and a positive NAO bring drier conditions. The early rainfall LF signal in SST is characterized by a dipole between the North Atlantic and South Atlantic and is associated with cross-equatorial winds that promote convection in the Caribbean. The study analyzes the upper-ocean structure—in particular, a low (high) salinity signal in the tropical North Atlantic (North Pacific) that relates to LF (HF) climate variability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here