
Seasonal Evolutions of Atmospheric Response to Decadal SST Anomalies in the North Pacific Subarctic Frontal Zone: Observations and a Coupled Model Simulation
Author(s) -
Bunmei Taguchi,
Hisashi Nakamura,
Masami aka,
Nobumasa Komori,
Akira Kuwano-Yoshida,
Kazuhiko Takaya,
Atsushi Goto
Publication year - 2012
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-11-00046.1
Subject(s) - climatology , anomaly (physics) , subarctic climate , sea surface temperature , extratropical cyclone , pacific decadal oscillation , atmospheric circulation , geology , teleconnection , forcing (mathematics) , environmental science , barotropic fluid , atmospheric sciences , oceanography , el niño southern oscillation , physics , condensed matter physics
Potential impacts of pronounced decadal-scale variations in the North Pacific sea surface temperature (SST) that tend to be confined to the subarctic frontal zone (SAFZ) upon seasonally varying atmospheric states are investigated, by using 48-yr observational data and a 120-yr simulation with an ocean–atmosphere coupled general circulation model (CGCM). SST fields based on in situ observations and the ocean component of the CGCM have horizontal resolutions of 2.0° and 0.5°, respectively, which can reasonably resolve frontal SST gradient across the SAFZ. Both the observations and CGCM simulation provide a consistent picture between SST anomalies in the SAFZ yielded by its decadal-scale meridional displacement and their association with atmospheric anomalies. Correlated with SST anomalies persistent in the SAFZ from fall to winter, a coherent decadal-scale signal in the wintertime atmospheric circulation over the North Pacific starts emerging in November and develops into an equivalent barotropic anomaly pattern similar to the Pacific–North American (PNA) pattern. The PNA-like signal with the weakened (enhanced) surface Aleutian low correlated with positive (negative) SST anomalies in the SAFZ becomes strongest and most robust in January, under the feedback forcing from synoptic-scale disturbances migrating along the Pacific storm track that shifts northward (southward) in accord with the oceanic SAFZ. This PNA-like signal, however, breaks down in February, which is suggestive of a particular sensitivity of that anomaly pattern to subtle differences in the background climatological-mean state. Despite its collapse in February, the PNA-like signal recurs the next January. This subseasonal evolution of the signal suggests that the PNA-like anomaly pattern may develop as a response to the persistent SST anomalies that are maintained mainly through ocean dynamics.