z-logo
open-access-imgOpen Access
Seasonal and Interannual Variations of the SST above the Seychelles Dome
Author(s) -
Takaaki Yokoi,
Tomoki Tozuka,
Toshio Yamagata
Publication year - 2012
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-10-05001.1
Subject(s) - thermocline , climatology , advection , mixed layer , shortwave radiation , sea surface temperature , environmental science , ekman transport , monsoon , geology , shortwave , heat flux , atmospheric sciences , oceanography , heat transfer , upwelling , radiative transfer , radiation , physics , quantum mechanics , thermodynamics
The seasonal and interannual variations of the sea surface temperature (SST) above the Seychelles Dome (SD) are investigated using outputs from an OGCM. The SST warms from August to April and cools from May to July. The surface heat flux plays the most important role in the seasonal variation, and it is mostly due to shortwave radiation. The horizontal advection tends to warm the SST in austral winter owing to the southward Ekman heat transport associated with the Indian summer monsoon. The cooling by the vertical turbulent diffusion becomes most effective in austral summer owing to the thin mixed layer during that time. On the interannual time scale, the SST becomes anomalously warm (cool) when the SD is weak (strong). In contrast to the seasonal variation, the vertical diffusion plays the most important role and causes anomalous warming (cooling). This warming (cooling) is due to the anomalously warm (cold) water below the mixed layer as a result of the deeper (shallower) thermocline in response to ocean dynamics. Also, the cooling by the vertical diffusion becomes less (more) efficient, because the mixed layer is anomalously thick (thin). The horizontal advection contributes to the anomalous warming (cooling) due to the anomalous southward (northward) Ekman heat transport. On the other hand, the anomalous surface heat flux tends to cool (warm) the mixed layer, because the warming of the mixed layer by the shortwave radiation becomes less (more) efficient due to the anomalously thick (thin) mixed layer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here