
On Boundary Layer Separation in the Lee of Mesoscale Topography
Author(s) -
Qingfang Jiang,
James D. Doyle,
Shouping Wang,
Ronald B. Smith
Publication year - 2007
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/jas3848.1
Subject(s) - mesoscale meteorology , geology , ridge , secondary circulation , amplitude , gravity wave , mechanics , boundary layer , hydrostatic equilibrium , forcing (mathematics) , atmospheric sciences , meteorology , climatology , physics , optics , wave propagation , paleontology , quantum mechanics
The onset of boundary layer separation (BLS) forced by gravity waves in the lee of mesoscale topography is investigated based on a series of numerical simulations and analytical formulations. It is demonstrated that BLS forced by trapped waves is governed by a normalized ratio of the vertical velocity maximum to the surface wind speed; other factors such as the mountain height, mountain slope, or the leeside speedup factor are less relevant. The onset of BLS is sensitive to the surface sensible heat flux—a positive heat flux tends to increase the surface wind speed through enhancing the vertical momentum mixing and accordingly inhibits the occurrence of BLS, and a negative heat flux does the opposite. The wave forcing required to cause BLS decreases with an increase of the aerodynamical roughness zo; a larger zo generates larger surface stress and weaker surface winds and therefore promotes BLS. In addition, BLS shows some sensitivity to the terrain geometry, which modulates the wave characteristics. For a wider ridge, a higher mountain is required to generate trapped waves with a wave amplitude comparable to that generated by a lower but narrower ridge. The stronger hydrostatic waves associated with the wider and higher ridge play only a minor role in the onset of BLS. It has been demonstrated that although hydrostatic waves generally do not directly induce BLS, undular bores may form associated with wave breaking in the lower troposphere, which in turn induce BLS. In addition, BLS could occur underneath undular jump heads or associate with trapped waves downstream of a jump head in the presence of a low-level inversion.