z-logo
open-access-imgOpen Access
Predictability and Information Theory. Part II: Imperfect Forecasts
Author(s) -
Timothy DelSole
Publication year - 2005
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/jas3522.1
Subject(s) - predictability , computer science , econometrics , generality , imperfect , conditional probability distribution , mutual information , joint probability distribution , nonlinear system , conditional expectation , mathematics , statistics , economics , artificial intelligence , linguistics , philosophy , physics , management , quantum mechanics
This paper presents a framework for quantifying predictability based on the behavior of imperfect forecasts. The critical quantity in this framework is not the forecast distribution, as used in many other predictability studies, but the conditional distribution of the state given the forecasts, called the regression forecast distribution. The average predictability of the regression forecast distribution is given by a quantity called the mutual information. Standard inequalities in information theory show that this quantity is bounded above by the average predictability of the true system and by the average predictability of the forecast system. These bounds clarify the role of potential predictability, of which many incorrect statements can be found in the literature. Mutual information has further attractive properties: it is invariant with respect to nonlinear transformations of the data, cannot be improved by manipulating the forecast, and reduces to familiar measures of correlation skill when the forecast and verification are joint normally distributed. The concept of potential predictable components is shown to define a lower-dimensional space that captures the full predictability of the regression forecast without loss of generality. The predictability of stationary, Gaussian, Markov systems is examined in detail. Some simple numerical examples suggest that imperfect forecasts are not always useful for joint normally distributed systems since greater predictability often can be obtained directly from observations. Rather, the usefulness of imperfect forecasts appears to lie in the fact that they can identify potential predictable components and capture nonstationary and/or nonlinear behavior, which are difficult to capture by low-dimensional, empirical models estimated from short historical records.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here