
Eulerian Available Energetics in Moist Atmospheres
Author(s) -
Peter R. Ban
Publication year - 2005
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/jas3516.1
Subject(s) - troposphere , stratosphere , diabatic , available energy , hydrostatic equilibrium , energy balance , depth sounding , potential energy , atmosphere (unit) , atmospheric sciences , adiabatic process , energetics , mechanics , environmental science , energy (signal processing) , physics , thermodynamics , geology , classical mechanics , oceanography , quantum mechanics
A new derivation of local available energy for a compressible, multicomponent fluid that allows for frictional, diabatic, and chemical (e.g., phase changes) processes is presented. The available energy is defined relative to an arbitrary isothermal atmosphere in hydrostatic balance with uniform total chemical potentials. It is shown that the available energy can be divided into available potential, available elastic, and available chemical energies. Each is shown to be positive definite. The general formulation is applied to the specific case of an idealized, moist, atmospheric sounding with liquid water and ice. The available energy is dominated by available potential energy in the troposphere but available elastic energy dominates in the upper stratosphere. The available chemical energy is significant in the lower troposphere where it dominates the available elastic energy. The total available energy increases with increasing water content.