z-logo
open-access-imgOpen Access
The Vertical Structure of Annular Modes
Author(s) -
Aditi Sheshadri,
R. Alan Plumb,
E. A. Lindgren,
Daniela I. V. Domeisen
Publication year - 2018
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/jas-d-17-0399.1
Subject(s) - troposphere , stratosphere , empirical orthogonal functions , atmospheric sciences , northern hemisphere , climatology , quasi biennial oscillation , environmental science , geology
Stratosphere–troposphere interactions are conventionally characterized using the first empirical orthogonal function (EOF) of fields such as zonal-mean zonal wind. Perpetual-winter integrations of an idealized model are used to contrast the vertical structures of EOFs with those of principal oscillation patterns (POPs; the modes of a linearized system governing the evolution of zonal flow anomalies). POP structures are shown to be insensitive to pressure weighting of the time series of interest, a factor that is particularly important for a deep system such as the stratosphere and troposphere. In contrast, EOFs change from being dominated by tropospheric variability with pressure weighting to being dominated by stratospheric variability without it. The analysis reveals separate tropospheric and stratospheric modes in model integrations that are set up to resemble midwinter variability of the troposphere and stratosphere in both hemispheres. Movies illustrating the time evolution of POP structures show the existence of a fast, propagating tropospheric mode in both integrations, and a pulsing stratospheric mode with a tropospheric extension in the Northern Hemisphere–like integration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here