z-logo
open-access-imgOpen Access
Can a Simple Dynamical System Describe the Interplay between Drag and Buoyancy in Terrain-Induced Canopy Flows?
Author(s) -
Frederik De Roo,
Tirtha Banerjee
Publication year - 2018
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/jas-d-17-0161.1
Subject(s) - buoyancy , drag , turbulence , mechanics , terrain , meteorology , flow (mathematics) , physics , environmental science , atmospheric sciences , geography , cartography
Under nonneutral stratification and in the presence of topography, the dynamics of turbulent flow within a canopy is not yet completely understood. This has, among other consequences, serious implications for the measurement of surface–atmosphere exchange by means of eddy covariance: for example, the measurement of carbon dioxide fluxes is strongly influenced if drainage flows occur during night, when the flow within the canopy decouples from the flow aloft. An improved physical understanding of the behavior of scalars under canopy turbulence in complex terrain is urgently needed. In the present work, the authors investigate the dynamics of turbulent flow within sloped canopies, focusing on the slope wind and potential temperature. The authors concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. The authors revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. The authors find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To augment the simplified dynamical system’s analysis, the authors make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze the phase synchronization behavior of the buoyancy and drag forces in the momentum budget to explore the turbulent dynamics in more detail.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here