
Two-Layer Stratified Flow past a Valley
Author(s) -
Richard Rotunno,
Manuela Lehner
Publication year - 2016
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/jas-d-16-0132.1
Subject(s) - stratified flow , inviscid flow , geology , stratified flows , flow (mathematics) , mechanics , potential flow , meteorology , physics , turbulence
Observations and models of nocturnal katabatic winds indicate strong low-level stability with much weaker stability aloft. When such winds encounter an embedded depression in an otherwise smooth sloping plane, the flow responds in a manner that is largely describable by the inviscid fluid dynamics of stratified flow. Building on earlier work, the present study presents a series of numerical simulations based on the simplest nontrivial idealization relevant to the observations: the height-independent flow of a two-layer stratified fluid past a two-dimensional valley. Stratified flow past a valley has received much less attention than the related problem of stratified flow past a hill. Hence, the present paper gives a detailed review of existing theory and fills a few gaps along the way. The theory is used as an interpretive guide to an extensive set of numerical simulations. The solutions exhibit a variety of behaviors that depend on the nondimensional input parameters. These behaviors range from complete flow through the valley to valley-flow stagnation to situations involving internal wave breaking, lee waves, and quasi-stationary waves in the valley. A diagram is presented that organizes the solutions into flow regimes as a function of the nondimensional input parameters.