z-logo
open-access-imgOpen Access
Sea Spray Generation in Very High Winds
Author(s) -
David G. OrtizSuslow,
Brian K. Haus,
Sanchit Mehta,
Nathan J. M. Laxague
Publication year - 2016
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/jas-d-15-0249.1
Subject(s) - radius , sea spray , boundary layer , wind speed , environmental science , planetary boundary layer , atmospheric sciences , aerosol , surface layer , meteorology , physics , mechanics , materials science , layer (electronics) , computer security , computer science , composite material
Quantifying the amount and rate of sea spray production at the ocean surface is critical to understanding the effect spray has on atmospheric boundary layer processes (e.g., tropical cyclones). Currently, only limited observational data exist that can be used to validate available droplet production models. To help fill this gap, a laboratory experiment was conducted that directly observed the vertical distribution of spume droplets above actively breaking waves. The experiments were carried out in hurricane-force conditions (10-m equivalent wind speed of 36–54 m s−1), and the observed particles ranged in radius r from 80 to nearly 1400 μm. High-resolution profiles (3 mm) were reconstructed from optical imagery taken within the boundary layer, ranging from 2 to 6 times the local significant wave height. Number concentrations were observed to have a radius dependence proportional to r−3 leading to spume production estimates that diverge from typical source models, which tend to exhibit a radius falloff closer to r−8. This was particularly significant for droplets with radii circa 1 mm whose modeled production rates were several orders of magnitude less than the rates expected from the observed concentrations. The vertical dependence of the number concentrations was observed to follow a logarithmic profile, which does not confirm the power-law relationship expected by a conventional spume generation parameterization. These observations bear significant implications for efforts to characterize the role these large droplets play in boundary layer processes under high-wind conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here