z-logo
open-access-imgOpen Access
Tropical Outgoing Longwave Radiation and Longwave Cloud Forcing Diurnal Cycles from CERES
Author(s) -
Patrick C. Taylor
Publication year - 2012
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/jas-d-12-088.1
Subject(s) - outgoing longwave radiation , diurnal cycle , environmental science , longwave , diurnal temperature variation , climatology , atmospheric sciences , cloud cover , forcing (mathematics) , meteorology , radiative transfer , convection , physics , geology , cloud computing , quantum mechanics , computer science , operating system
The diurnal cycle is a fundamental earth system variability driven by daily variations in solar insolation. Understanding diurnal variability is important for characterizing top-of-atmosphere and surface energy budgets. Climatological and seasonal first diurnal cycle harmonics of outgoing longwave radiation (OLR) and longwave cloud forcing (LWCF) are investigated using the Clouds and the Earth’s Radiant Energy System (CERES) synoptic 3-hourly data. A comparison with previous studies indicates generally similar results. However, the results indicate that the CERES OLR diurnal cycle amplitudes are 10%–20% larger in desert regions than previous analyses. This difference results from the temporal interpolation technique overestimating the daily maximum OLR. OLR diurnal cycle amplitudes in other tropical regions agree with previous work. Results show that the diurnal maximum and minimum OLR variability contributes equally to the total OLR variance over ocean; however, over land the diurnal maximum OLR variance contributes at least 50% more to the total OLR variability than the minimum OLR. The differences in maximum and minimum daily OLR variability are largely due to differences in surface temperature standard deviations at these times, about 5–6 and 3–4 K, respectively. The OLR variance at diurnal maximum and minimum is also influenced by negative and positive correlations, respectively, between LWCF and clear-sky OLR. The anticorrelation between LWCF and clear-sky OLR at diurnal OLR maximum indicates smaller cloud fractions at warmer surface temperatures. The relationship between LWCF and clear-sky OLR at diurnal minimum OLR appears to result from a preference for deep convection, more high clouds, and larger LWCF values to occur with warmer surface temperatures driving a narrower diurnal minimum OLR distribution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here