Open Access
Atmospheric Available Energy
Author(s) -
Peter R. Ban
Publication year - 2012
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/jas-d-12-059.1
Subject(s) - atmosphere (unit) , baroclinity , hydrostatic equilibrium , kinetic energy , environmental science , potential energy , thermodynamic equilibrium , atmospheric sciences , physics , mechanics , thermodynamics , classical mechanics , quantum mechanics
The total potential energy of the atmosphere is the sum of its internal and gravitational energies. The portion of this total energy available to be converted into kinetic energy is determined relative to an isothermal, hydrostatic, equilibrium atmosphere that is convectively and dynamically “dead.” The temperature of this equilibrium state is determined by minimization of a generalized Gibbs function defined between the atmosphere and its equilibrium. Thus, this function represents the maximum amount of total energy that can be converted into kinetic energy and, hence, the available energy of the atmosphere. This general approach includes the effects of terrain, moisture, and hydrometeors. Applications are presented for both individual soundings and idealized baroclinic zones. An algorithm partitions the available energy into available baroclinic and available convective energies. Estimates of the available energetics of the general circulation suggest that atmospheric motions are primarily driven by moist and dry fluxes of exergy from the earth’s surface with an efficiency of about two-thirds.