z-logo
open-access-imgOpen Access
Comparison of Satellite-, Model-, and Radiosonde-Derived Convective Available Potential Energy in the Southern Great Plains Region
Author(s) -
Jessica Gartzke,
Robert O. Knuteson,
Grace Przybyl,
Steven A. Ackerman,
Henry E. Revercomb
Publication year - 2017
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/jamc-d-16-0267.1
Subject(s) - radiosonde , convective available potential energy , atmospheric infrared sounder , environmental science , satellite , meteorology , potential temperature , water vapor , nowcasting , climatology , convection , geology , geography , physics , astronomy
Convective available potential energy (CAPE) is one of the physical quantities used by operational meteorologists when issuing severe-weather convective watches and warnings. Recent advances in satellite technology could provide timely observations of atmospheric temperature and water vapor profiles over the continental United States, but only limited validation exists in the literature to characterize uncertainties in CAPE derived from the new satellite sensors. In this study, 10 years of Vaisala, Inc., RS92 radiosonde observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site were matched to overpasses of the NASA Aqua satellite that were made from January 2005 through December 2014. Vertical profiles of temperature and water vapor from the NASA Atmospheric Infrared Sounder (AIRS) were extracted in a region surrounding the DOE ARM SGP central facility near Lamont, Oklahoma. Surface-based CAPE was computed using software consistent with methods used by the National Weather Service Storm Prediction Center. The one-to-one correspondence of the AIRS-derived CAPE with the ARM-radiosonde-derived CAPE has a correlation coefficient of only 0.34. Substitution of the ARM-radiosonde surface values into the AIRS profiles improves the correlation to 0.95. The use of AIRS profiles above the surface level provides surface-based CAPE values that are very similar to those computed from Vaisala radiosondes. These results suggest that a merging of surface observations with satellite-derived thermodynamic profiles could make better use of the satellite spatial coverage and temporal sampling for estimation of CAPE in near–real time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here