z-logo
open-access-imgOpen Access
Spatiotemporal Characteristics of Rainstorm-Induced Hazards Modified by Urbanization in Beijing
Author(s) -
Haibo Hu
Publication year - 2015
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/jamc-d-14-0267.1
Subject(s) - environmental science , beijing , precipitation , urbanization , climatology , rain gauge , spatial distribution , trend analysis , physical geography , china , meteorology , geography , geology , statistics , remote sensing , mathematics , archaeology , economics , economic growth
The rainfall data of 20 rain gauge stations are used for analysis on the spatiotemporal characteristics of rainstorm-induced hazards in Beijing. A local model used to calculate rainstorm hazards index values (RHIVs) has been developed to reflect the degree of rainstorm-induced hazards. The Mann–Kendall test on the RHIVs series recognizes 1984 as the changepoint in the series, which is shortly after the beginning of a rapid urban expansion period in 1981. The RHIV trend analysis reveals that the trends indices of all stations are negative before 1984 but mostly positive after 1984. Although the climate in north China shows drought conditions, and the annual rainfalls have decreased in recent years, no relationship is implied to a reduction in rainstorm-induced hazards. By using the lognormal distribution model, the probability analysis on the RHIVs of 20 stations indicates that very extreme precipitation occurred in increasing frequency after 1984. Moreover, the estimated spatial distributions of 100-, 150-, and 200-mm daily rainfall exceedance probabilities (EPs) indicate that these EPs have increased mainly in the urban areas and northward, which are the downwind of the summer monsoon, whereas the EPs to the south of the urban areas have decreased since 1984. Such spatiotemporal characteristics of the RHIVs can be attributed to modification of precipitation by the changed land use and land cover in urban areas. Moreover, the urban-induced rainfall downwind of the urban areas enhanced the rain intensity and rain rate, which led to an increase in RHIVs and contributed to the frequent occurrences of flash floods in Beijing metropolis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here