z-logo
open-access-imgOpen Access
Bulk Hook Echo Raindrop Sizes Retrieved Using Mobile, Polarimetric Doppler Radar Observations
Author(s) -
Michael M. French,
Donald W. Burgess,
Edward R. Mansell,
Louis J. Wicker
Publication year - 2015
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/jamc-d-14-0171.1
Subject(s) - tornado , radar , hook , doppler radar , storm , environmental science , remote sensing , meteorology , geology , squall line , physics , computer science , telecommunications , structural engineering , engineering
Polarimetric radar observations obtained by the NOAA/National Severe Storms Laboratory mobile, X-band, dual-polarization radar (NOXP) are used to investigate “hook echo” precipitation properties in several tornadic and nontornadic supercells. Hook echo drop size distributions (DSDs) were estimated using NOXP data obtained from 2009 to 2012, including during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). Differences between tornadic and nontornadic hook echo DSDs are explored, and comparisons are made with previous observations of estimated hook echo DSDs made from stationary S- and C-band Doppler radars. Tornadic hook echoes consistently contain radar gates that are characterized by small raindrops; nontornadic hook echoes are mixed between those that have some small-drop gates and those that have almost no small-drop gates. In addition, the spatial distribution of DSDs was estimated using the high-spatial-resolution data afforded by NOXP. A unique polarimetric signature, an area of relatively low values of differential radar reflectivity factor Z DR south and east of the tornado, is observed in many of the tornadic cases. Also, because most data were obtained using 2-min volumetric updates, the evolution of approximated hook echo precipitation properties was studied during parts of the life cycles of three tornadoes. In one case, there is a large decrease in the percentage of large-raindrop gates and an increase in the percentage of small-raindrop gates in the minutes leading up to tornado formation. The percentage of large-drop gates generally increases prior to and during tornado dissipation. Near-storm environmental data are used to put forth possible relationships between bulk hook echo DSDs and tornado production and life cycle.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here