
Low-Level Jets in the North American Regional Reanalysis (NARR): A Comparison with Rawinsonde Observations
Author(s) -
Claudia K. Walters,
Julie A. Winkler,
Sara Husseini,
Ryan Keeling,
Jovanka Nikolic,
Shiyuan Zhong
Publication year - 2014
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/jamc-d-13-0364.1
Subject(s) - radiosonde , environmental science , climatology , meteorology , wind speed , geology , geography
Climatological analyses of low-level jets (LLJs) can be negatively influenced by the coarse spatial and temporal resolution and frequent changes in observing and archiving protocols of rawinsonde observations (raobs). The introduction of reanalysis datasets, such as the North American Regional Reanalysis (NARR), provides new resources for climatological research with finer spatial and temporal resolution and potentially fewer inhomogeneities. To assess the compatibility of LLJ characteristics identified from NARR wind profiles with those obtained from raob profiles, LLJs were extracted using standard jet definitions from NARR and raobs at 12 locations in the central United States for four representative years that reflect different rawinsonde protocols. LLJ characteristics (e.g., between-station differences in relative frequency, diurnal fluctuations, and mean speed and elevation) are generally consistent, although absolute frequencies are smaller for NARR relative to raobs at most stations. LLJs are concurrently identified in the NARR and raob wind profiles on less than 60% of the observation times with LLJ activity. Variations are seen between analysis years and locations. Of particular note is the substantial increase in LLJ frequency seen in raobs since the introduction of the Radiosonde Replacement System, which has led to a greater discrepancy in jet frequency between the NARR and raob datasets. The analyses suggest that NARR is a viable additional resource for climatological analyses of LLJs. Many of the findings are likely applicable for other fine-resolution reanalysis datasets, although differences between reanalyses require that each be carefully evaluated before its use in climatological analyses of wind maxima.