
Height Correction of Atmospheric Motion Vectors Using Satellite Lidar Observations from CALIPSO
Author(s) -
Kathrin Folger,
Martin Weißmann
Publication year - 2014
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/jamc-d-13-0337.1
Subject(s) - lidar , remote sensing , geostationary orbit , satellite , environmental science , meteorology , geology , geography , physics , astronomy
Atmospheric motion vectors (AMVs) provide valuable wind information for the initial conditions of numerical weather prediction models, but height-assignment issues and horizontal error correlations require a rigid thinning of the available AMVs in current data assimilation systems. The aim of this study is to investigate the feasibility of correcting the pressure heights of operational AMVs from the geostationary satellites Meteosat-9 and Meteosat-10 with cloud-top heights derived from lidar observations by the polar-orbiting Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations ( CALIPSO ) satellite. The study shows that the wind error of AMVs above 700 hPa is reduced by 12%–17% when AMV winds are assigned to 120-hPa-deep layers below the lidar cloud tops. This result demonstrates the potential of lidar cloud observations for the improvement of the AMV height assignment. In addition, the lidar correction reduces the “slow” bias of current upper-level AMVs and is expected to reduce the horizontal correlation of AMV errors.