z-logo
open-access-imgOpen Access
Unified Formulation of Single- and Multimoment Normalizations of the Raindrop Size Distribution Based on the Gamma Probability Density Function
Author(s) -
Nan Yang,
Guy Delrieu,
Brice Boudevillain,
P. Hazenberg,
R. Uijlenhoet
Publication year - 2014
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/jamc-d-12-0244.1
Subject(s) - normalization (sociology) , scaling , dimensionless quantity , statistical physics , probability density function , moment (physics) , power law , gamma distribution , mathematics , series (stratigraphy) , probability distribution , physics , statistics , geometry , quantum mechanics , paleontology , anthropology , biology , sociology
This study offers a unified formulation of single- and multimoment normalizations of the raindrop size distribution (DSD), which have been proposed in the framework of scaling analyses in the literature. The key point is to consider a well-defined “general distribution” g ( x ) as the probability density function (pdf) of the raindrop diameter scaled by a characteristic diameter D c . The two-parameter gamma pdf is used to model the g ( x ) function. This theory is illustrated with a 3-yr DSD time series collected in the Cévennes region, France. It is shown that three DSD moments ( M 2 , M 3 , and M 4 ) make it possible to satisfactorily model the DSDs, both for individual spectra and for time series of spectra. The formulation is then extended to the one- and two-moment normalization by introducing single and dual power-law models. As compared with previous scaling formulations, this approach explicitly accounts for the prefactors of the power-law models to yield a unique and dimensionless g ( x ), whatever the scaling moment(s) considered. A parameter estimation procedure, based on the analysis of power-law regressions and the self-consistency relationships, is proposed for those normalizations. The implementation of this method with different scaling DSD moments (rain rate and/or radar reflectivity) yields g ( x ) functions similar to the one obtained with the three-moment normalization. For a particular rain event, highly consistent g ( x ) functions can be obtained during homogeneous rain phases, whatever the scaling moments used. However, the g ( x ) functions may present contrasting shapes from one phase to another. This supports the idea that the g ( x ) function is process dependent and not “unique” as hypothesized in the scaling theory.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here