z-logo
open-access-imgOpen Access
New Methods toward Minimizing the Slow Speed Bias Associated with Atmospheric Motion Vectors
Author(s) -
Wayne Bresky,
Jaime Daniels,
Andrew Bailey,
Steve Wanzong
Publication year - 2012
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/jamc-d-11-0234.1
Subject(s) - smoothing , tracking (education) , radiosonde , computer science , wind speed , atmosphere (unit) , pixel , satellite , meteorology , computer vision , physics , psychology , pedagogy , astronomy
Comparisons between satellite-derived winds and collocated rawinsonde observations often show a pronounced slow speed bias at mid- and upper levels of the atmosphere. A leading cause of the slow speed bias is the improper assignment of the tracer to a height that is too high in the atmosphere. Height errors alone cannot fully explain the slow bias, however. Another factor influencing the speed bias is the size of the target window used in the tracking step. Tracking with a large target window can cause excessive averaging to occur and a smoothing of the instantaneous wind field. Conversely, if too small a window is specified, there is an increased risk of finding a false match. The authors have developed a new “nested tracking” approach that isolates the dominant local motion within a cloud scene and minimizes the smoothing of the motion estimate. A major advantage of the new approach is the ability to identify which pixels within the cloud scene are contributing to the tracking solution. Knowing which pixels contribute to the dominant motion allows for a more representative height to be derived, thereby directly linking the height assignment to the tracking process, which is an important goal for producers of global atmospheric motion vector (AMV) data. When compared with equivalent rawinsondes, the AMVs derived with the new approach show a considerable improvement in the speed bias and root-mean-square error over a control set of AMVs derived with more-conventional methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here