z-logo
open-access-imgOpen Access
Impact of More Frequent Observations on the Understanding of Tasmanian Fire Danger
Author(s) -
Paul FoxHughes
Publication year - 2011
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/jamc-d-10-05001.1
Subject(s) - environmental science , climatology , range (aeronautics) , climate change , meteorology , geography , geology , oceanography , materials science , composite material
Half-hourly airport weather observations have been used to construct high-temporal-resolution datasets of McArthur Mark V forest fire danger index (FFDI) values for three locations in Tasmania, Australia, enabling a more complete understanding of the range and diurnal variability of fire weather. Such an understanding is important for fire management and planning to account for the possibility of weather-related fire flare ups—in particular, early in a day and during rapidly changing situations. In addition, climate studies have hitherto generally been able to access only daily or at best 3-hourly weather data to generate fire-weather index values. Comparison of FFDI values calculated from frequent (subhourly) observations with those derived from 3-hourly synoptic observations suggests that large numbers of significant fire-weather events are missed, even by a synoptic observation schedule, and, in particular, by observations made at 1500 LT only, suggesting that many climate studies may underestimate the frequencies of occurrence of fire-weather events. At Hobart, in southeastern Tasmania, only one-half of diurnal FFDI peaks over a critical warning level occur at 1500 LT, with the remainder occurring across a broad range of times. The study reinforces a perception of pronounced differences in the character of fire weather across Tasmania, with differences in diurnal patterns of variability evident between locations, in addition to well-known differences in the ranges of peak values observed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here