
A Satellite-Based Parameter to Monitor the Aerosol Impact on Convective Clouds
Author(s) -
Itamar M. Lensky,
Ron Drori
Publication year - 2007
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/jam2487.1
Subject(s) - environmental science , precipitation , aerosol , atmospheric sciences , cloud condensation nuclei , satellite , convection , cloud base , smoke , climatology , altitude (triangle) , meteorology , cloud top , cloud computing , geography , geology , mathematics , aerospace engineering , computer science , engineering , operating system , geometry
A method to monitor the aerosol impact on convective clouds using satellite data is presented. The impacts of forest fires and highly polluting megacities on cloud precipitation formation processes are quantified by the vertical extent above cloud base to which convective cloud tops have to develop for onset of precipitation in terms of temperature difference D15. Large D15 is a manifestation of the precipitation suppression effect of small cloud condensation nuclei aerosols that elevate the altitude where effective precipitation processes are initiated. A warmer land surface with a greater sensible heat flux that increases the updraft velocity at cloud base may also contribute to the same effect. Therefore, D15 is greater for clouds that develop over more polluted and/or warmer surfaces that result from smoke and urban pollution and/or urban heat island, respectively. The precipitation suppression effects of both smoke from forest fires and urban effects can be vividly seen in a case study over Southeast Asia. Typical values of D15 are 1°–6°C for tropical maritime clouds, 8°–15°C for tropical clouds over land, 16°–26°C for urban air pollution, and 18°–39°C for clouds ingesting smoke from forest fires.