z-logo
open-access-imgOpen Access
Optimization of an Instance-Based GOES Cloud Classification Algorithm
Author(s) -
Richard L. Bankert,
Robert Wade
Publication year - 2007
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/jam2451.1
Subject(s) - computer science , classifier (uml) , artificial intelligence , cloud computing , k nearest neighbors algorithm , training set , pattern recognition (psychology) , subroutine , pixel , contextual image classification , algorithm , image (mathematics) , operating system
An instance-based nearest-neighbor algorithm was developed for a Geostationary Operational Environmental Satellite (GOES) cloud classifier. Expert-labeled samples serve as the training sets for the various GOES image classification scenes. The initial implementation of the classifier using the complete set of available training samples has proven to be an inefficient method for real-time image classifications, requiring long computational run times and significant computer resources. A variety of training-set reduction methods were examined to find smaller training sets that provide quicker classifier run times with minimal reduction in classifier testing set accuracy. General differences within real-time image classifications as a result of using the various reduction methods were also analyzed. The fast condensed nearest-neighbor (FCNN) method reduced the size of the individual training sets by 68.3% (fourfold cross-validation testing average) while the average overall accuracy of the testing sets decreased by only 4.1%. Training sets resulting from these reduction methods were also applied within a real-time classifier using a one-nearest-neighbor subroutine. Using the FCNN-reduced set, the subroutine run time on a 30° latitude × 30° longitude image (GOES-10 daytime) with 11 289 600 total pixels decreased by an average of 60.7%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here