
Variability of Drop Size Distributions: Time-Scale Dependence of the Variability and Its Effects on Rain Estimation
Author(s) -
GyuWon Lee,
Isztar Zawadzki
Publication year - 2005
Publication title -
journal of applied meteorology
Language(s) - English
Resource type - Journals
eISSN - 1520-0450
pISSN - 0894-8763
DOI - 10.1175/jam2183.1
Subject(s) - disdrometer , environmental science , storm , climatology , radar , scale (ratio) , meteorology , atmospheric sciences , statistics , mathematics , rain gauge , geology , precipitation , physics , computer science , telecommunications , quantum mechanics
A systematic and intensive analysis is performed on 5 yr of reliable disdrometric data (over 20 000 one-minute drop size distributions, DSDs) to investigate the variability of DSDs in the Montreal, Quebec, Canada, area. The scale dependence (climatological scale, day to day, within a day, between physical processes, and within a physical process) of the DSD variability and its effect on rainfall intensity R estimation from radar reflectivity Z are explored in terms of bias and random errors. Detail error distributions are also provided. The use of a climatological R–Z relationship for rainfall—affected by all of the DSDs’ variability—leads on average to a random error of 41% in instantaneous rain-rate estimation. This error decreases with integration time, but the decrease becomes less pronounced for integration times longer than 2 h. Daily accumulations computed with the climatological R–Z relationship have a bias of 28% because of the day-to-day DSD variability. However, when daily R–Z relationships are used, a random error of 32% in instantaneous rain rate is still present because of the DSD variability within a day. This illustrates that most of the variability of DSDs has its origin within a storm or between storms within a day. Physical processes leading to the formation of DSDs are then classified according to the vertical structure of radar data as measured by a UHF profiler collocated with the disdrometer. The DSD variability among different physical processes is larger than the day-to-day variability. A bias of 41% in rain accumulations is due to the DSD variability between physical processes. Accurate rain-rate estimation (∼7%) can be achieved only after the proper underlying physical process is identified and the associated R–Z relationship is used.